Novel euryarchaeotal lineages detected on rice roots and in the anoxic bulk soil of flooded rice microcosms

نویسندگان

  • Gro kopf R
  • Stubner
  • Liesack
چکیده

Because excised, washed roots of rice (Oryza sativa) immediately produce CH4 when they are incubated under anoxic conditions (P. Frenzel and U. Bosse, FEMS Microbiol. Ecol. 21:25-36, 1996), we employed a culture-independent molecular approach to identify the methanogenic microbial community present on roots of rice plants. Archaeal small-subunit rRNA-encoding genes were amplified directly from total root DNA by PCR and then cloned. Thirty-two archaeal rice root (ARR) gene clones were randomly selected, and the amplified primary structures of ca. 750 nucleotide sequence positions were compared. Only 10 of the environmental sequences were affiliated with known methanogens; 5 were affiliated with Methanosarcina spp., and 5 were affiliated with Methanobacterium spp. The remaining 22 ARR gene clones formed four distinct lineages (rice clusters I through IV) which were not closely related to any known cultured member of the Archaea. Rice clusters I and II formed distinct clades within the phylogenetic radiation of the orders "Methanosarcinales" and Methanomicrobiales. Rice cluster I was novel, and rice cluster II was closely affiliated with environmental sequences obtained from bog peat in northern England. Rice cluster III occurred on the same branch as Thermoplasma acidophilum and marine group II but was only distantly related to these taxa. Rice cluster IV was a deep-branching crenarchaeotal assemblage that was closely related to clone pGrfC26, an environmental sequence recovered from a temperate marsh environment. The use of a domain-specific oligonucleotide probe in a fluorescent in situ hybridization analysis revealed that viable members of the Archaea were present on the surfaces of rice roots. In addition, we describe a novel euryarchaeotal main line of descent, designated rice cluster V, which was detected in anoxic rice paddy soil. These results indicate that there is an astonishing richness of archaeal diversity present on rice roots and in the surrounding paddy soil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Culturable populations of Sporomusa spp. and Desulfovibrio spp. in the anoxic bulk soil of flooded rice microcosms.

Most-probable-number (MPN) counts were made of homoacetogenic and other bacteria present in the anoxic flooded bulk soil of laboratory microcosms containing 90- to 95-day-old rice plants. MPN counts with substrates known to be useful for the selective enrichment or the cultivation of homoacetogenic bacteria (betaine, ethylene glycol, 2, 3-butanediol, and 3,4,5-trimethoxybenzoate) gave counts of...

متن کامل

Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval.

A dual approach consisting of cultivation and molecular retrieval of partial archaeal 16S rRNA genes was carried out to characterize the diversity and structure of the methanogenic community inhabiting the anoxic bulk soil of flooded rice microcosms. The molecular approach identified four groups of known methanogens. Three environmental sequences clustered with Methanobacterium bryantii and Met...

متن کامل

Legacy of Rice Roots as Encoded in Distinctive Microsites of Oxides, Silicates, and Organic Matter

Rice (Oryza sativa) is usually grown under flooded conditions, leading to anoxic periods in the soil. Rice plants transport oxygen via aerenchyma from the atmosphere to the roots. Driven by O2 release into the rhizosphere, radial gradients of ferric Fe and co-precipitated organic substances are formed. Our study aimed at elucidating the composition and spatial extension of those gradients. Air-...

متن کامل

Rice Husk Bio-ash Impacts Redox Status and Rice Growth in a Flooded Soil from Southwestern China

This paper reports a soil-based bioassay of rice husk bio-ash impacts on redox properties and rice production. Bio-ash was produced during the pyrolytic process of rice husk as a boiler fuel, after which it was applied as an amendment to a flooded soil. Bio-ash was amended before rice transplanting at different mass rates including 0%, 0.1%, 1% and 5%, which was defined as T1, T2, T3, and T4 re...

متن کامل

Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil.

The use of dilution culture techniques to cultivate saccharolytic bacteria present in the anoxic soil of flooded rice microcosms allowed the isolation of three new strains of bacteria, typified by their small cell sizes, with culturable numbers estimated at between 1.2 x 10(5) and 7.3 x 10(5) cells per g of dry soil. The average cell volumes of all three strains were 0.03 to 0.04 microns3, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 64 12  شماره 

صفحات  -

تاریخ انتشار 1998